UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF LABORATÓRIO DE ESTUDOS DO ENSINO DE MATEMÁTICA SUPERIOR - LEMAS

PARTE 2

Frações parciais

3º CASO

O denominador Q contém fatores quadráticos irredutíveis, nenhum dos quais se repete. Se Q(x) tem o fator $ax^2 + bx + c$, onde $b^2 - 4a < 0$, então a expressão para $\frac{P(x)}{Q(x)}$, terá o termo $\frac{A_1x + A_2}{ax^2 + bx + c}$, em que A_1 e A_2 são as constantes a serem determinadas.

Por exemplo, a função $f(x)=\frac{x}{(x-2)(x^2+1)(x^2+4)}$ tem a seguinte decomposição em frações parciais:

$$\frac{x}{(x-2)(x^2+1)(x^2+4)} = \frac{A_1}{x-2} + \frac{A_2x + A_3}{x^2+1} + \frac{A_4x + A_5}{x^2+4}.$$

Exemplo: Vamos decompor $f(x) = \frac{2x^2 - x + 4}{x^3 + 4x}$ em frações parciais.

Como $x^3 + 4x = x(x^2 + 4)$ e $(x^2 + 4)$ é uma forma quadrática irredutível em \mathbb{R} , então escrevemos:

$$\frac{2x^2 - x + 4}{x(x^2 + 4)} = \frac{A_1}{x} + \frac{A_2x + A_3}{x^2 + 4}.$$

Multiplicando a equação anterior por $x(x^2 + 4)$, temos:

$$2x^2 - x + 4 = A_1(x^2 + 4) + (A_2x + A_3)x.$$

Aplicando a propriedade distributiva:

$$2x^2 - x + 4 = A_1x^2 + 4A_1 + A_2x^2 + A_3x$$
.

Agrupando os termos semelhantes:

$$2x^2 - x + 4 = (A_1 + A_2)x^2 + A_3x + 4A_1$$
.

Igualando os respectivos coeficientes, obtemos:

$$A_1 + A_2 = 2$$

 $A_3 = -1$
 $4A_1 = 4$.

Resolvendo o sistema, chegamos $A_1 = 1$, $A_2 = 1$ e $A_3 = -1$.

Assim, podemos reescrever f como:

$$\frac{2x^2 - x + 4}{x(x^2 + 4)} = \frac{1}{x} + \frac{x - 1}{x^2 + 4}.$$

4º CASO

O denominador Q contém fatores quadráticos irredutíveis repetidos. Se Q(x) tem um fator $(ax^2 + bx + c)^r$ onde $b^2 - 4ac < 0$, então em vez de uma única fração parcial, a soma

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^{r'}}$$

ocorre na decomposição em frações parciais de $\frac{P(x)}{Q(x)}$.

Por exemplo, decompormos a função $f(x)=\frac{x^3+x^2+1}{x(x-1)(x^2+x+1)(x^2+1)^3}$ em frações parciais, temos:

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

$$= \frac{A_1}{x} + \frac{A_2}{x-1} + \frac{A_3x + A_4}{x^2 + x + 1} + \frac{A_5x + A_6}{x^2 + 1} + \frac{A_7x + A_8}{(x^2 + 1)^2} + \frac{A_9x + A_{10}}{(x^2 + 1)^3}.$$

Exemplo: Vamos decompor $f(x) = \frac{1-x+2x^2-x^3}{x(x^2+1)^2}$ em frações parciais.

A forma da decomposição em frações parciais é:

$$\frac{1-x+2x^2-x^3}{x(x^2+1)^2} = \frac{A_1}{x} + \frac{A_2x+A_3}{x^2+1} + \frac{A_4x+A_5}{(x^2+1)^2}.$$

Multiplicando pelo mínimo múltiplo comum dos denominadores, $x(x^2 + 1)^2$, temos:

$$-x^3 + 2x^2 - x + 1 = A_1(x^2 + 1)^2 + (A_2x + A_3)x(x^2 + 1) + (A_4x + A_5)x.$$

Expandindo a primeira parcela e aplicando a propriedade distributiva do segundo membro da equação anterior:

$$-x^3 + 2x^2 - x + 1 = A_1(x^4 + 2x^2 + 1) + A_2(x^4 + x^2) + A_3(x^3 + x) + A_4x^2 + A_5x.$$

Agrupando os termos semelhantes:

$$-x^3 + 2x^2 - x + 1 = (A_1 + A_2)x^4 + A_3x^3 + (2A_1 + A_2 + A_4)x^2 + (A_3 + A_5)x + A_1$$
 (***)

Se igualarmos os coeficientes na equação (***), obtemos o seguinte sistema:

$$A_1 + A_2 = 0$$
 $A_3 = -1$
 $2A_1 + A_2 + A_4 = 2$
 $A_3 + A_5 = -1$
 $A_1 = 1$.

Resolvendo o sistema chegamos à solução que $A_1=1, A_2=-1, A_3=-1, A_4=1$ e $A_5=0.$

Daí a função f pode ser reescrita como:

$$\frac{1-x+2x^2-x^3}{x(x^2+1)^2} = \frac{1}{x} - \frac{1x-1}{x^2+1} + \frac{1x+0}{(x^2+1)^2}.$$

EXERCÍCIOS: Escreva f(x) na forma de decomposição em frações parciais.

1)
$$f(x) = \frac{3x^2 - 7x + 5}{x(x^2 - 4x + 5)}$$

2)
$$f(x) = \frac{x-2}{x(x^2-4x+5)^2}$$